Refractive index based optically transparent biosensor device design for early detection of coronavirus

Opt Quantum Electron. 2023;55(6):507. doi: 10.1007/s11082-023-04788-8. Epub 2023 Apr 8.

Abstract

For the quick detection of the new Coronavirus (COVID-19), a highly sensitive D-shaped gold-coated surface Plasmon resonance (SPR) biosensor is presented. The COVID-19 virus may be quickly and accurately identified using the SPR-based biosensor, which is essential for halting the spread of this excruciating epidemic. The suggested biosensor is used for detection of the IBV i.e. infectious bronchitis viruses contaminated cell that belongs to the family of COVID-19 having a refractive index of - 0.96, - 0.97, - 0.98, - 0.99, - 1 that is observed with the change in EID concentration. Some important optical parameter variations are examined in the investigation process. Multiphysics version 5.3 with the Finite element method is used for the proposed biosensor. The proposed sensor depicts maximum wavelength sensitivity of 40,141.76 nm/RIU. Some other parameters such as confinement loss, crosstalk, and insertion loss are also analyzed for the proposed sensor. The reported minimum insertion loss for the refractive index (RI) - 1 is 2.9 dB. Simple design, good sensitivity, and lower value of losses make the proposed sensor proficient for the detection of infectious bronchitis viruses belonging to COVID-19.

Keywords: Coronavirus detection; D-shaped biosensor; Optically transparent device; Refractive index sensor; Surface plasmon resonance.