316Engineered extracellular vesicle-mediated delivery of miR-199a-3p increases the viability of 3D-printed cardiac patches

Int J Bioprint. 2023 Jan 17;9(2):670. doi: 10.18063/ijb.v9i2.670. eCollection 2023.

Abstract

In recent years, extrusion-based three-dimensional (3D) bioprinting is employed for engineering cardiac patches (CP) due to its ability to assemble complex structures from hydrogel-based bioinks. However, the cell viability in such CPs is low due to shear forces applied on the cells in the bioink, inducing cellular apoptosis. Herein, we investigated whether the incorporation of extracellular vesicles (EVs) in the bioink, engineered to continually deliver the cell survival factor miR-199a-3p would increase the viability within the CP. EVs from THP-1-derived activated macrophages (MΦ) were isolated and characterized by nanoparticle tracking analysis (NTA), cryogenic electron microscopy (cryo-TEM), and Western blot analysis. MiR-199a-3p mimic was loaded into EVs by electroporation after optimization of applied voltage and pulses. Functionality of the engineered EVs was assessed in neonatal rat cardiomyocyte (NRCM) monolayers using immunostaining for the proliferation markers ki67 and Aurora B kinase. To examine the effect of engineered EVs on 3D-bioprinted CP viability, the EVs were added to the bioink, consisting of alginate-RGD, gelatin, and NRCM. Metabolic activity and expression levels of activated-caspase 3 for apoptosis of the 3D-bioprinted CP were evaluated after 5 days. Electroporation (850 V with 5 pulses) was found to be optimal for miR loading; miR-199a-3p levels in EVs increased fivefold compared to simple incubation, with a loading efficiency of 21.0%. EV size and integrity were maintained under these conditions. Cellular uptake of engineered EVs by NRCM was validated, as 58% of cTnT+ cells internalized EVs after 24 h. The engineered EVs induced CM proliferation, increasing the ratio of cell-cycle re-entry of cTnT+ cells by 30% (Ki67) and midbodies+ cell ratio by twofold (Aurora B) compared with the controls. The inclusion of engineered EVs in bioink yielded CP with threefold greater cell viability compared to bioink with no EVs. The prolonged effect of EVs was evident as the CP exhibited elevated metabolic activities after 5 days, with less apoptotic cells compared to CP with no EVs. The addition of miR-199a-3p-loaded EVs to the bioink improved the viability of 3D-printed CP and is expected to contribute to their integration in vivo.

Keywords: 3D bioprinting; Cardiac patch; Cardiomyocytes; Extracellular vesicles; Tissue Engineering; miRNA.