Superhydrophobic aerogel blanket with magnetic and solar heating effect enables efficient continuous cleanup of highly viscous crude oil

J Hazard Mater. 2023 Mar 5:445:130594. doi: 10.1016/j.jhazmat.2022.130594. Epub 2022 Dec 14.

Abstract

Rapid cleanup of highly-viscous oil spills the sea is eagerly desired while still remains a great challenge. Hydrophobic and lipophilic adsorbents are regarded as ideal candidate for oil spill remediation. However, traditional adsorbents are not suitable for viscous crude oil, which would block the porous structure and lead to poor adsorption efficiency. In this work, a non-contact responsive superhydrophobic SiO2 aerogel blankets (SAB) with excellent magnetic and solar heating effect for efficient removal of viscosity oils under harsh environments was developed, via assembled MXene and Fe3O4/polydimethylsiloxane layer-by-layer along the SAB skeleton (Fe3O4/MXene@SAB). The Fe3O4/MXene@SAB exhibited excellent compression tolerance (compression stress 70.69 kPa), superhydrophobic performance (water contact angle 166°), and corrosion resistance (weak acid/strong base). Due to high water repellency and stable porous structure, the Fe3O4/MXene@SAB could successfully separate oil-water mixture, while with remarkable separation flux (1.50-3.19 × 104 L m-2 h-1), and separation efficiency (99.91-99.98 %). Furthermore, the responsive Fe3O4/MXene@SAB also showed outstanding magnetic-heating and solar-heating conversion efficiency, which could continuously separate high viscosity crude oil from seawater by pump even under relatively low magnetic fields and mild sun. The superhydrophobic blankets hold great promise for efficient treatment of heavy oil spills.

Keywords: Crude oil; Magnetocaloric; Photothermal; SiO(2) aerogel blankets; Superhydrophobic property.