Preparation of Crosslinked Poly(acrylic acid- co-acrylamide)- Grafted Deproteinized Natural Rubber/Silica Composites as Coating Materials for Controlled Release of Fertilizer

Polymers (Basel). 2023 Apr 2;15(7):1770. doi: 10.3390/polym15071770.

Abstract

The crosslinked poly(acrylic acid-co-acrylamide)-grafted deproteinized natural rubber/silica ((PAA-co-PAM)-DPNR/silica) composites were prepared and applied as coating materials for fertilizer in this work. The crosslinked (PAA-co-PAM)-DPNR was prepared via emulsion graft copolymerization in the presence of MBA as a crosslinking agent. The modified DPNR was mixed with various contents of silica (10 to 30 phr) to form the composites. The existence of crosslinked (PAA-co-PAM) after modification provided a water adsorption ability to DPNR. The swelling degree values of composites were found in the range of 2217.3 ± 182.0 to 8132.3 ± 483.8%. The addition of silica in the composites resulted in an improvement in mechanical properties. The crosslinked (PAA-co-PAM)-DPNR with 20 phr of silica increased its compressive strength and compressive modulus by 1.61 and 1.55 times compared to the unloaded silica sample, respectively. There was no breakage of samples after 80% compression strain. Potassium nitrate, a model fertilizer, was loaded into chitosan beads with a loading percentage of 40.55 ± 1.03% and then coated with the modified natural rubber/silica composites. The crosslinked (PAA-co-PAM)-DPNR/silica composites as the outer layers had the ability of holding water in their structure and retarded the release of fertilizer. These composites could be promising materials for controlled release and water retention that would have potential for agricultural application.

Keywords: controlled release fertilizer; modified natural rubber; natural rubber composites; poly(acrylic acid-co-acrylamide); water retention.