Adapting from Low to High: An Update to CO2-Concentrating Mechanisms of Cyanobacteria and Microalgae

Plants (Basel). 2023 Apr 6;12(7):1569. doi: 10.3390/plants12071569.

Abstract

The intracellular accumulation of inorganic carbon (Ci) by microalgae and cyanobacteria under ambient atmospheric CO2 levels was first documented in the 80s of the 20th Century. Hence, a third variety of the CO2-concentrating mechanism (CCM), acting in aquatic photoautotrophs with the C3 photosynthetic pathway, was revealed in addition to the then-known schemes of CCM, functioning in CAM and C4 higher plants. Despite the low affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of microalgae and cyanobacteria for the CO2 substrate and low CO2/O2 specificity, CCM allows them to perform efficient CO2 fixation in the reductive pentose phosphate (RPP) cycle. CCM is based on the coordinated operation of strategically located carbonic anhydrases and CO2/HCO3- uptake systems. This cooperation enables the intracellular accumulation of HCO3-, which is then employed to generate a high concentration of CO2 molecules in the vicinity of Rubisco's active centers compensating up for the shortcomings of enzyme features. CCM functions as an add-on to the RPP cycle while also acting as an important regulatory link in the interaction of dark and light reactions of photosynthesis. This review summarizes recent advances in the study of CCM molecular and cellular organization in microalgae and cyanobacteria, as well as the fundamental principles of its functioning and regulation.

Keywords: C3 photosynthesis; CO2-concentrating mechanism; Chlamydomonas reinhardtii; Rubisco; carbonic anhydrase; carboxysome; cyanobacteria; inorganic carbon transport; microalgae; pyrenoid.

Publication types

  • Review