Material Recycling for Manufacturing Aggregates Using Melting Slag of Automobile Shredder Residues

Materials (Basel). 2023 Mar 27;16(7):2664. doi: 10.3390/ma16072664.

Abstract

The quantity of waste from end-of-life vehicles is increasing with an increase in the number of scrapped internal combustion engine vehicles owing to international trends such as carbon neutrality and particulate matter reduction. The recycling rate must be ≥95%; however, the average recycling rate remains at approximately 89%. Therefore, the improvement of the recycling of automobile shredder residues (ASR) is gaining attention. In this study, four types of products (interlocking, clay, and lightweight swelled ceramic (LSC) bricks, and asphalt paving aggregate (APA)) were manufactured using ASR melting slag (ASRMS). Environmental performance, quality standards, and technology were evaluated to assess the recyclability of the manufactured bricks. The interlocking brick substituted melting slag for sand and stone powder as an aggregate. As melting slag content increased, absorption decreased and bending strength increased. Clay brick was manufactured by replacing kaolin and feldspar with melting slag that substituted for 20%. The quality of clay bricks mixed with over 15% melting slag was not better than standard. Asphalt paving aggregate was used to investigate the optimum condition of slag content in mixed asphalt; the mixture ratio showed that 61% broken stone of 13 mm, 6% screenings, 10% melting slag, 15% sand and 8% filler was most effective. A lightweight swelled ceramic brick was manufactured by using melting slag, front glass, and so on. Specific gravity and compressive strength ranged from 0.38 to 0.51 and from 339.7 to 373.6 N/cm2. ASRMS exhibited an environmental performance suitable for recycling and the manufactured bricks satisfied the quality standards. The recyclability of ASR was also assessed in terms of waste usage, conformance to quality standards, market size, and demand prediction. APA showed the best results followed by interlocking, clay, and LSC bricks.

Keywords: automobile shredder residue; environmental assessment; material recycling; melting slag; waste.

Grants and funding

This study was supported by the National Institute of Environmental Research, funded by the Ministry of Environment (NIER-2022-01-01-050).