The Arabidopsis Deubiquitylase OTU5 Suppresses Flowering by Histone Modification-Mediated Activation of the Major Flowering Repressors FLC, MAF4, and MAF5

Int J Mol Sci. 2023 Mar 24;24(7):6176. doi: 10.3390/ijms24076176.

Abstract

Distinct phylogeny and substrate specificities suggest that 12 Arabidopsis Ovarian Tumor domain-containing (OTU) deubiquitinases participate in conserved or plant-specific functions. The otu5-1 null mutant displayed a pleiotropic phenotype, including early flowering, mimicking that of mutants harboring defects in subunits (e.g., ARP6) of the SWR1 complex (SWR1c) involved in histone H2A.Z deposition. Transcriptome and RT-qPCR analyses suggest that downregulated FLC and MAF4-5 are responsible for the early flowering of otu5-1. qChIP analyses revealed a reduction and increase in activating and repressive histone marks, respectively, on FLC and MAF4-5 in otu5-1. Subcellular fractionation, GFP-fusion expression, and MNase treatment of chromatin showed that OTU5 is nucleus-enriched and chromatin-associated. Moreover, OTU5 was found to be associated with FLC and MAF4-5. The OTU5-associated protein complex(es) appears to be distinct from SWR1c, as the molecular weights of OTU5 complex(es) were unaltered in arp6-1 plants. Furthermore, the otu5-1 arp6-1 double mutant exhibited synergistic phenotypes, and H2A.Z levels on FLC/MAF4-5 were reduced in arp6-1 but not otu5-1. Our results support the proposition that Arabidopsis OTU5, acting independently of SWR1c, suppresses flowering by activating FLC and MAF4-5 through histone modification. Double-mutant analyses also indicate that OTU5 acts independently of the HUB1-mediated pathway, but it is partially required for FLC-mediated flowering suppression in autonomous pathway mutants and FRIGIDA-Col.

Keywords: ARP6; FLC; HUB1; MAF4; MAF5; OTU; SWR1c; deubiquitylation; epigenetics; flowering.

MeSH terms

  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / metabolism
  • Chromatin / metabolism
  • Flowers / metabolism
  • Gene Expression Regulation, Plant
  • Histone Code
  • Histones / genetics
  • Histones / metabolism
  • MADS Domain Proteins / metabolism
  • Mutation
  • Transcription Factors / metabolism

Substances

  • Arabidopsis Proteins
  • MADS Domain Proteins
  • Histones
  • Chromatin
  • Transcription Factors