Copper and iron metal resistant rhizospheric bacteria boost the plant growth and bacoside A content in Bacopa monnieri under stress conditions

Funct Plant Biol. 2023 Jun;50(6):482-496. doi: 10.1071/FP22263.

Abstract

Bacteria that enhance plant growth and development and are found in the vicinity of roots are referred to as plant growth-promoting rhizobacteria. Some beneficial bacteria help plant tolerance to many hazardous chemical elements. In this context, Cupriavidus basilensis , Novosphingobium humi , Bacillus zanthoxyli , Bacillus sp., Paenibacillus alvei , Ancylobacter aquaticus and Ralstonia syzygii metal-tolerant rhizospheric bacteria were isolated from rhizospheric soil associated with Bacopa monnieri . The beneficial effects of rhizospheric bacteria on B. monnieri plant physiology and biochemical responses were investigated under pot conditions at two levels (100μM and 500μM) of CuSO4 or FeCl3 . N. humi , A. aquaticus and R. syzygii bacterial strains were associated with significantly increased height and biomass under normal and stress conditions. An assay for indole acetic acid in isolated rhizospheric bacteria found differential secretion except Bacillus zanthoxyli . Bacoside A is a major phytocompound in B. monnieri with medicinal value; maximum induction was observed in the R. syzygii treatment. High concentration of copper and iron salts negatively influenced height, biomass and photosynthetic pigments; however N. humi , A. aquaticus , Bacilllus sp. and R. syzygii beneficial bacterial helped plants under stress conditions. Moreover, a significant enhancement in chlorophyll a and b was noticed in C. basilensis , B. zanthoxyli , Bacilllus sp., P. alvei and R. syzygii treatments, without much influence on carotenoid levels. Therefore, the present study emphasises the importance of isolating plant growth-promoting rhizobacteria for use in bacopa plants exposed to metals such as copper and iron in soil.

MeSH terms

  • Bacopa* / chemistry
  • Bacteria
  • Chlorophyll A / pharmacology
  • Copper / pharmacology
  • Gallionellaceae*
  • Iron / pharmacology
  • Soil

Substances

  • Copper
  • bacoside A
  • Iron
  • Chlorophyll A
  • Soil