Remote Water-to-Air Eavesdropping with a Phase-Engineered Impedance Matching Metasurface

Adv Mater. 2023 Jul;35(29):e2301799. doi: 10.1002/adma.202301799. Epub 2023 Jun 3.

Abstract

Efficiently receiving underwater sound remotely from air is a long-standing challenge in acoustics hindered by the large impedance mismatch at the water-air interface. Here, a phase-engineered water-air impedance matching metasurface is proposed and experimentally demonstrated for remote and efficient water-to-air eavesdropping. The judiciously designed metasurface with near-unity transmission efficiency, long monitoring distance, and high mechanical stiffness is capable of making the water-air interface acoustically transparent and, at the same time, freewheelingly patterning the transmitted wavefront. This enables efficient control over the effective spatial location of a distant airborne sensor such that it can measure underwater signals with large signal-to-noise ratios as if placed close to the physical underwater source. Such airborne eavesdropping of underwater sound is experimentally demonstrated with a measured sensitivity enhancement of nearly 104 at 8 kHz, far from achievable with the current state-of-the-art methods. Moreover, the opportunities of using the proposed metasurface for cross-media orbital-angular-momentum-multiplexed communication and underwater acoustic window are also demonstrated. This metasurface opens new avenues for communication and sensing in inhomogeneities with totally reflective interfaces, which may be translated to nano-optics and radio frequencies.

Keywords: metasurfaces; phase engineering; sound transparency; water-to-air eavesdropping.