[Characteristics of Phytoplankton Communities and Key Impact Factors in Three Types of Lakes in Wuhan]

Huan Jing Ke Xue. 2023 Apr 8;44(4):2093-2102. doi: 10.13227/j.hjkx.202205100.
[Article in Chinese]

Abstract

To reveal the characteristics and key impact factors of phytoplankton communities in different types of lakes, sampling surveys for phytoplankton and water quality parameters were conducted at 174 sampling sites in a total of 24 lakes covering urban, countryside, and ecological conservation areas of Wuhan in spring, summer, autumn, and winter 2018. The results showed that a total of 365 species of phytoplankton from nine phyla and 159 genera were identified in the three types of lakes. The main species were green algae, cyanobacteria, and diatoms, accounting for 55.34%, 15.89%, and 15.07% of the total number of species, respectively. The phytoplankton cell density varied from 3.60×106-421.99×106 cell·L-1, chlorophyll-a content varied from 15.60-240.50 μg·L-1, biomass varied from 27.71-379.79 mg·L-1, and the Shannon-Wiener diversity index varied from 0.29-2.86. In the three lake types, cell density, Chla, and biomass were lower in EL and UL, whereas the opposite was true for the Shannon-Wiener diversity index. NMDS and ANOSIM analysis showed differences in phytoplankton community structure (Stress=0.13, R=0.048, P=0.2298). In addition, the phytoplankton community structure of the three lake types had significant seasonal characteristics, with chlorophyll-a content and biomass being significantly higher in summer than in winter (P<0.05). Spearman correlation analysis showed that phytoplankton biomass decreased with increasing N:P in UL and CL, whereas the opposite was true for EL. Redundancy analysis (RDA) showed that WT, pH, NO3-, EC, and N:P were the key factors that significantly affected the variability in phytoplankton community structure in the three types of lakes in Wuhan (P<0.05).

Keywords: habitat heterogeneity; key factors; phytoplankton community characteristics; three lake types; water quality parameters.

Publication types

  • English Abstract

MeSH terms

  • Chlorophyll / analysis
  • Chlorophyll A
  • Cyanobacteria*
  • Diatoms*
  • Lakes / analysis
  • Phytoplankton

Substances

  • Chlorophyll
  • Chlorophyll A