Investigating and Optimizing the Lysate-Based Expression of Nonribosomal Peptide Synthetases Using a Reporter System

ACS Synth Biol. 2023 May 19;12(5):1447-1460. doi: 10.1021/acssynbio.2c00658. Epub 2023 Apr 11.

Abstract

Lysate-based cell-free expression (CFE) systems are accessible platforms for expressing proteins that are difficult to synthesize in vivo, such as nonribosomal peptide synthetases (NRPSs). NRPSs are large (>100 kDa), modular enzyme complexes that synthesize bioactive peptide natural products. This synthetic process is analogous to transcription/translation (TX/TL) in lysates, resulting in potential resource competition between NRPS expression and NRPS activity in cell-free environments. Moreover, CFE conditions depend on the size and structure of the protein. Here, a reporter system for rapidly investigating and optimizing reaction environments for NRPS CFE is described. This strategy is demonstrated in E. coli lysate reactions using blue pigment synthetase A (BpsA), a model NRPS, carrying a C-terminal tetracysteine (TC) tag which forms a fluorescent complex with the biarsenical dye, FlAsH. A colorimetric assay was adapted for lysate reactions to detect the blue pigment product, indigoidine, of cell-free expressed BpsA-TC, confirming that the tagged enzyme is catalytically active. An optimized protocol for end point TC/FlAsH complex measurements in reactions enables quick comparisons of full-length BpsA-TC expressed under different reaction conditions, defining unique requirements for NRPS expression that are related to the protein's catalytic activity and size. Importantly, these protein-dependent CFE conditions enable higher indigoidine titer and improve the expression of other monomodular NRPSs. Notably, these conditions differ from those used for the expression of superfolder GFP (sfGFP), a common reporter for optimizing lysate-based CFE systems, indicating the necessity for tailored reporters to optimize expression for specific enzyme classes. The reporter system is anticipated to advance lysate-based CFE systems for complex enzyme synthesis, enabling natural product discovery.

Keywords: blue pigment synthetase A; cell-free protein expression; fluorescent labeling; natural products; nonribosomal peptide synthetase.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Escherichia coli* / genetics
  • Escherichia coli* / metabolism
  • Peptide Synthases* / metabolism
  • Peptides

Substances

  • non-ribosomal peptide synthase
  • Peptide Synthases
  • Peptides