Ventilatory response to peripheral chemoreflex and muscle metaboreflex during static handgrip in healthy humans: evidence of hyperadditive integration

Exp Physiol. 2023 Jul;108(7):932-939. doi: 10.1113/EP091094. Epub 2023 Apr 10.

Abstract

New findings: What is the central question of this study? What is the effect of peripheral chemoreflex and muscle metaboreflex integration on ventilation regulation, and what is the effect of integration on breathing-related sensations and emotions? What is the main finding and its importance? Peripheral chemoreflex and muscle metaboreflex coactivation during isocapnic static handgrip exercise appeared to elicit a hyperadditive effect with regard to ventilation and an additive effect with regard to breathing-related sensations and emotions. These findings reveal the nature of the integration between two neural mechanisms that operate during small-muscle static exercise performed under hypoxia.

Abstract: Exercise augments the hypoxia-induced ventilatory response in an exercise intensity-dependent manner. A mutual influence of hypoxia-induced peripheral chemoreflex activation and exercise-induced muscle metaboreflex activation might mediate the augmentation phenomenon. However, the nature of these reflexes' integration (i.e., hyperadditive, additive or hypoadditive) remains unclear, and the coactivation effect on breathing-related sensations and emotions has not been explored. Accordingly, we investigated the effect of peripheral chemoreflex and muscle metaboreflex coactivation on ventilatory variables and breathing-related sensations and emotions during exercise. Fourteen healthy adults performed 2-min isocapnic static handgrip, first with the non-dominant hand and immediately after with the dominant hand. During the dominant hand exercise, we (a) did not manipulate either reflex (control); (b) activated the peripheral chemoreflex by hypoxia; (c) activated the muscle metaboreflex in the non-dominant arm by post-exercise circulatory occlusion (PECO); or (d) coactivated both reflexes by simultaneous hypoxia and PECO use. Ventilation response to coactivation of reflexes (mean ± SD, 13 ± 6 l/min) was greater than the sum of responses to separated activations of reflexes (mean ± SD, 8 ± 8 l/min, P = 0.005). Breathing-related sensory and emotional responses were similar between coactivation of reflexes and the sum of separate activations of reflexes. Thus, the peripheral chemoreflex and muscle metaboreflex integration during exercise appeared to be hyperadditive with regard to ventilation and additive with regard to breathing-related sensations and emotions in healthy adults.

Keywords: breathing; dyspnoea; isometric exercise; synergism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Hand Strength* / physiology
  • Humans
  • Hypoxia
  • Muscle, Skeletal / physiology
  • Muscles*
  • Reflex / physiology
  • Respiration