MicroRNA‑155 modulation of CD8+ T‑cell activity personalizes response to disease‑modifying therapies of patients with relapsing‑remitting multiple sclerosis

Med Int (Lond). 2023 Mar 20;3(2):20. doi: 10.3892/mi.2023.80. eCollection 2023 Mar-Apr.

Abstract

Multiple sclerosis (MS) is a chronic autoimmune disease where activated immune cells can attack oligodendrocytes causing damage to the myelin sheath. Several molecular mechanisms are responsible for the auto-activation of immune cells such as RNA interference (RNAi) through microRNAs (miRNAs or miRs). In the present study, the role of miR-155 in regulating CD8+ T-cell activity in patients with relapsing-remitting multiple sclerosis (RRMS) was investigated, in terms of its migratory functions with regard to intracellular adhesion molecule-1 (ICAM1) and integrin subunit β2 (ITGB2), and its cytotoxic proteins, perforin and granzyme B. Gene expression of miR-155, ICAM1, ITGB2, perforin and granzyme B was evaluated following epigenetic modulations using reverse transcription-quantitative polymerase chain reaction in CD8+ T-cells isolated from blood samples of patients with RRMS and compared to healthy controls. The ectopic expression of miR-155 resulted in a persistent downregulation in all genes of interest related to CD8+ T-cell activation that were positively correlated with the Expanded Disability Status Scale of patients. The present study revealed the interplay between miR-155, ICAM1, and ITGB2, shedding light on their beneficial use as possible therapeutic regulators and diagnostic biomarkers of disease. Moreover, epigenetic modulations enhancing the efficacy of disease-modifying therapies (DMTs) may be employed as personalized therapy, to decrease the side effects of DMTs and improve the outcomes of patients.

Keywords: granzyme B; intracellular adhesion molecule 1; miRNA; perforin; personalized therapy.

Grants and funding

Funding: Partial financial support for the present study was received from the DAAD/BMBF Funded M.Sc. Scholarship.