Magnesiation roasting kinetics exploration of vanadium slag toward minimization of tailing toxicity

J Hazard Mater. 2023 Jun 15:452:131378. doi: 10.1016/j.jhazmat.2023.131378. Epub 2023 Apr 6.

Abstract

In order to minimize the toxicity of vanadium extraction tailings, the vanadium extraction efficiency should be as high as possible to minimize the residual V(V) content in tailings. In this work, the kinetics of the novel magnesiation roasting of vanadium slag, including the roasting mechanism and kinetic models, is explored to intensify the vanadium extraction. By combination of various characterizations, the microscopic mechanism of magnesiation roasting is revealed, which indicates the simultaneous occurrence of the salt-formation→oxidation routine (major) and the oxidation→salt-formation routine (minor). Macroscopic kinetic model studies show the magnesiation roasting of vanadium slag proceeds in two stages. In the initial 50 min, the roasting follows the Interface Controlled Reaction Model, during which the stable roasting temperature is essential to intensify the magnesiation. In the long-time range (50-90 min), the roasting follows the Ginstling-Brounstein Model, during which the acceleration of air blow rate is most favorable. With intensified roasting kinetics, the vanadium extraction efficiency is as high as 96.65%. This work has provided the guideline to intensify the magnesiation roasting of vanadium slag for vanadium extraction, which can not only minimize the tailing toxicity of vanadium extraction but also accelerate the industrial application of the novel magnesiation roasting technique.

Keywords: Magnesiation roasting; Roasting kinetics; Roasting mechanism; Vanadium extraction; Vanadium slag.