Pair-Density-Wave and Chiral Superconductivity in Twisted Bilayer Transition Metal Dichalcogenides

Phys Rev Lett. 2023 Mar 24;130(12):126001. doi: 10.1103/PhysRevLett.130.126001.

Abstract

We theoretically explore possible orders induced by weak repulsive interactions in twisted bilayer transition metal dichalcogenides (e.g., WSe_{2}) in the presence of an out-of-plane electric field. Using renormalization group analysis, we show that superconductivity survives even with the conventional van Hove singularities. We find that topological chiral superconducting states with Chern number N=1, 2, 4 (namely, p+ip, d+id, and g+ig) appear over a large parameter region with a moiré filling factor around n=1. At some special values of applied electric field and in the presence of a weak out-of-plane Zeeman field, spin-polarized pair-density-wave (PDW) superconductivity can emerge. This spin-polarized PDW state can be probed by experiments such as spin-polarized STM measuring spin-resolved pairing gap and quasiparticle interference. Moreover, the spin-polarized PDW could lead to a spin-polarized superconducting diode effect.