Fumarate as positive modulator of allosteric transitions in the pentameric ligand-gated ion channel GLIC: requirement of an intact vestibular pocket

J Physiol. 2023 Jun;601(12):2447-2472. doi: 10.1113/JP283765. Epub 2023 Apr 27.

Abstract

Gloeobacter violaceus ligand-gated ion channel (GLIC) is a prokaryotic orthologue of brain pentameric neurotransmitter receptors. Using whole-cell patch-clamp electrophysiology in a host cell line, we show that short-chain dicarboxylate compounds are positive modulators of pHo 5-evoked GLIC activity, with a rank order of action fumarate > succinate > malonate > glutarate. Potentiation by fumarate depends on intracellular pH, mainly as a result of a strong decrease of the pHo 5-evoked current when intracellular pH decreases. The modulating effect of fumarate also depends on extracellular pH, as fumarate is a weak inhibitor at pHo 6 and shows no agonist action at neutral pHo. A mutational analysis of residue dependency for succinate and fumarate effects, based on two carboxylate-binding pockets previously identified by crystallography (Fourati et al., 2020), shows that positive modulation involves both the inter-subunit pocket, homologous to the neurotransmitter-binding orthotopic site, and the intra-subunit (also called vestibular) pocket. An almost similar pattern of mutational impact is observed for the effect of caffeate, a known negative modulator. We propose, for both dicarboxylate compounds and caffeate, a model where the inter-subunit pocket is the actual binding site, and the region corresponding to the vestibular pocket is required either for inter-subunit binding itself, or for binding-to-gating coupling during the allosteric transitions involved in pore-gating modulation. KEY POINTS: Using a bacterial orthologue of brain pentameric neurotransmitter receptors, we show that the orthotopic/orthosteric agonist site and the adjacent vestibular region are functionally interdependent in mediating compound-elicited modulation. We propose that the two sites in the extracellular domain are involved 'in series', a mechanism which may have relevance for eukaryote receptors. We show that short-chain dicarboxylate compounds are positive modulators of the Gloeobacter violaceus ligand-gated ion channel (GLIC). The most potent compound identified is fumarate, known to occupy the orthotopic/orthosteric site in previously published crystal structures. We show that intracellular pH modulates GLIC allosteric transitions, as previously known for extracellular pH. We report a caesium to sodium permeability ratio (PCs /PNa ) of 0.54 for GLIC ion pore.

Keywords: GLIC; allotopic site; fumarate; intracellular pH; orthosteric site; orthotopic site; pLGIC; positive allosteric modulator; succinate; vestibular site.

MeSH terms

  • Bacterial Proteins / metabolism
  • Cyanobacteria* / metabolism
  • Ligand-Gated Ion Channels* / chemistry
  • Receptors, Neurotransmitter / metabolism
  • Succinates / metabolism

Substances

  • Ligand-Gated Ion Channels
  • Receptors, Neurotransmitter
  • Succinates
  • Bacterial Proteins

Supplementary concepts

  • Gloeobacter violaceus