Stability and bioactivity evaluation of black pepper essential oil nanoemulsion

Heliyon. 2023 Mar 22;9(4):e14730. doi: 10.1016/j.heliyon.2023.e14730. eCollection 2023 Apr.

Abstract

Black pepper essential oil has the same disadvantages as other plant essential oils, such as volatilization, high sensitivity to light and heat and poor water solubility, which leads to great limitations in application. This study improved the stability and antibacterial properties of black pepper essential oil (BPEO) based on a nano-emulsification process. Tween 80 was selected as the emulsifier to prepare the BPEO nanoemulsion. Gas chromatograph - mass spectrometer (GC-MS) was used to analyze the composition of BPEO, of which d-limonene was the main component (37.41%). After emulsification, black pepper nanoemulsion was obtained (droplet size was 11.8 nm). The water solubility and stability of the emulsions at 25 °C were also improved with decreasing particle size. Antimicrobial properties of plant pathogens (Colletotrichum gloeosporioides, Botryodiplodia theobromae) and foodborne pathogens (Staphylococcus aureus, Escherichia coli) were evaluated by disk diffusion and other techniques for determining minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). With 12.5 mg mL-1 MIC and 25 mg mL-1 MBC, BPEO inhibited the growth of two tested plant pathogens and two foodborne pathogens. Essential oils (EO) were encapsulated in a nanoemulsion system to enhance the bacteriostatic effect of essential oils and reduce MIC and MBC concentrations. After emulsification, the biological activity (antimicrobial and antioxidant) of the BPEO nanoemulsion was considerably improved, nano-emulsification had certain significance for the study of EOs.

Keywords: Antimicrobial activity; Antioxidant activity; Black pepper essential oil; Nanoemulsion; Stability.