Comparing the variations and influencing factors of CH4 emissions from paddies and wetlands under CO2 enrichment: A data synthesis in the last three decades

Environ Res. 2023 Jul 1:228:115842. doi: 10.1016/j.envres.2023.115842. Epub 2023 Apr 5.

Abstract

Understanding and quantifying the impact of elevated tropospheric carbon dioxide concentration (e [CO2]) on methane (CH4) globally is important for effectively assessing and mitigating climate warming. Paddies and wetlands are the two important sources of CH4 emissions. Yet, a quantitative synthetic investigation of the effects of e [CO2] on CH4 emissions from paddies and wetlands on a global scale has not been conducted. Here, we conducted a meta-analysis of 488 observation cases from 40 studies to assess the long-term effects of e [CO2] (ambient [CO2]+ 53-400 μmol mol-1) on CH4 emissions and to identify the relevant key drivers. On aggregate, e [CO2] increased CH4 emissions by 25.7% (p < 0.05) from paddies but did not affect CH4 emissions from wetlands (-3.29%; p > 0.05). The e [CO2] effects on paddy CH4 emissions were positively related to that on belowground biomass and soil-dissolved CH4 content. However, these factors under e [CO2] resulted in no significant change in CH4 emissions in wetlands. Particularly, the e [CO2]-induced abundance of methanogens increased in paddies but decreased in wetlands. In addition, tillering number of rice and water table levels affected e [CO2]-induced CH4 emissions in paddies and wetlands, respectively. On a global scale, CH4 emissions changed from an increase (+0.13 and + 0.86 Pg CO2-eq yr-1) under short-term e [CO2] into a decrease and no changes (-0.22 and + 0.03 Pg CO2-eq yr-1) under long-term e [CO2] in paddies and wetlands, respectively. This suggested that e [CO2]-induced CH4 emissions from paddies and wetlands changed over time. Our results not only shed light on the different stimulative responses of CH4 emissions to e [CO2] from paddy and wetland ecosystems but also suggest that estimates of e [CO2]-induced CH4 emissions from global paddies and wetlands need to account for long-term changes in various regions.

Keywords: CH(4) emissions; CO(2) enrichment; Paddies; Tiller numbers; Water table levels; Wetlands.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon Dioxide / analysis
  • Ecosystem*
  • Methane / analysis
  • Nitrous Oxide
  • Soil
  • Wetlands*

Substances

  • Carbon Dioxide
  • Soil
  • Methane
  • Nitrous Oxide