Three-Stage Semisupervised Cross-Modal Hashing With Pairwise Relations Exploitation

IEEE Trans Neural Netw Learn Syst. 2023 Apr 6:PP. doi: 10.1109/TNNLS.2023.3263221. Online ahead of print.

Abstract

Hashing methods have sparked a great revolution in cross-modal retrieval due to the low cost of storage and computation. Benefiting from the sufficient semantic information of labeled data, supervised hashing methods have shown better performance compared with unsupervised ones. Nevertheless, it is expensive and labor intensive to annotate the training samples, which restricts the feasibility of supervised methods in real applications. To deal with this limitation, a novel semisupervised hashing method, i.e., three-stage semisupervised hashing (TS3H) is proposed in this article, where both labeled and unlabeled data are seamlessly handled. Different from other semisupervised approaches that learn the pseudolabels, hash codes, and hash functions simultaneously, the new approach is decomposed into three stages as the name implies, in which all of the stages are conducted individually to make the optimization cost-effective and precise. Specifically, the classifiers of different modalities are learned via the provided supervised information to predict the labels of unlabeled data at first. Then, hash code learning is achieved with a simple but efficient scheme by unifying the provided and the newly predicted labels. To capture the discriminative information and preserve the semantic similarities, we leverage pairwise relations to supervise both classifier learning and hash code learning. Finally, the modality-specific hash functions are obtained by transforming the training samples to the generated hash codes. The new approach is compared with the state-of-the-art shallow and deep cross-modal hashing (DCMH) methods on several widely used benchmark databases, and the experiment results verify its efficiency and superiority.