Accelerating ammonia synthesis in a membraneless flow electrolyzer through coupling ambient dinitrogen oxidation and water splitting

iScience. 2023 Mar 21;26(4):106407. doi: 10.1016/j.isci.2023.106407. eCollection 2023 Apr 21.

Abstract

An electrochemical approach for ammonia production is successfully developed by coupling the anodic dinitrogen oxidation reaction (NOR) and cathodic hydrogen evolution reaction (HER) within a well-designed membraneless flow electrolyzer. The obtained reactor shows the preferential yield of ammonia over nitrogen oxides on the vanadium nitride catalyst surface. At an applied oxidation potential of 2.25 V versus the reversible hydrogen electrode (vs RHE), a promoted ammonia production rate and Faradaic efficiency (FE) were obtained with 9.9 mmol g-1 h-1 (0.029 mmol cm-2 h-1) and 4.8%, respectively. Besides, the negative affection of ammonia contamination is efficiently alleviated. Density functional theory calculations revealed that the thermodynamic energy needed to produce ammonia (-0.63 eV) is far lower than that of producing nitrogen oxide (0.96 eV) from hydrogenated nitrogen oxides [∗N2OH] splitting, confirming the coupling of NOR and HER.

Keywords: Catalysis; Materials chemistry; Materials science.