The Indenyl Effect: Accelerated C-H Amidation of Arenes via Ind*RhIII Nitrene Transfer Catalysis

Angew Chem Int Ed Engl. 2023 Jun 5;62(23):e202302175. doi: 10.1002/anie.202302175. Epub 2023 Apr 28.

Abstract

Investigations into C-H amidation reactions catalysed by cationic half-sandwich d6 metal complexes revealed that the indenyl-derived catalyst [Ind*RhCl2 ]2 significantly accelerated the directed ortho C-H amidation of benzoyl silanes using 1,4,2-dioxazol-5-ones. Ring slippage involving a haptotropic η5 to η3 rearrangement of the indenyl complex proposedly enables ligand substitution at the metal centre to proceed via associative, rather than dissociative pathways, leading to significant rate and yield enhancements. Intriguingly, this phenomenon appears specific for C-H amidation reactions involving weakly coordinating carbonyl-based directing groups with no acceleration observed for the corresponding reactions involving strongly coordinating nitrogen-based directing groups.

Keywords: Amide; C−H Activation; Dioxazolone; Organosilicon; Rhodium.