Identification of Co-O-Mo Active Centers on Co-Doped MoS2 Electrocatalyst

ACS Appl Mater Interfaces. 2023 Apr 19;15(15):19695-19704. doi: 10.1021/acsami.3c01281. Epub 2023 Apr 5.

Abstract

Strategies for harmonizing the construction of an active site and the building of electron transport for a hybrid MoS2 catalyst are crucial for its application in electrochemical reactions. In this work, an accurate and facile hydrothermal strategy was proposed to fabricate the active center of Co-O-Mo on a supported MoS2 catalyst by forming a CoMoSO phase on the edge of MoS2, yielding (Co-O)x-MoSy (x = 0, 0.3, 0.6, 1, 1.5, or 2.1). The results show that the electrochemical performances (hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and electrochemical degradation) of the yielded MoS2-based catalysts were positively correlated with the Co-O bonds, verifying the significant role of Co-O-Mo as the active center. The fabricated (Co-O)-MoS0.9 presented an extremely low overpotential and Tafel slope in both HER and OER, and it also demonstrated excellent BPA removal in the electrochemical degradation reaction. As compared with the Co-Mo-S configuration, the configuration of Co-O-Mo not only serves as the active center but also provides a conducting channel to facilitate electron conductivity with more accessible charge transfer at the electrode/electrolyte interface, which is favorable for electrocatalytic reaction. This work offers a new perspective for the active mechanism of metallic-heteroatom-dopant electrocatalysts and further boosts research on the development of noble/non-noble hybrid electrocatalysts in the future.

Keywords: (Co−O)x-MoSy electrocatalyst; Co−O−Mo active center; electron transfer channel; molybdenum disulfide; multifunctional catalyst.