STING Protein-Based In Situ Vaccine Synergizes CD4+ T, CD8+ T, and NK Cells for Tumor Eradication

Adv Healthc Mater. 2023 Sep;12(24):e2300688. doi: 10.1002/adhm.202300688. Epub 2023 Apr 21.

Abstract

Stimulator of interferon genes (STING) signaling is a promising target in cancer immunotherapy, with many ongoing clinical studies in combination with immune checkpoint blockade (ICB). Existing STING-based therapies largely focus on activating CD8+ T cell or NK cell-mediated cytotoxicity, while the role of CD4+ T cells in STING signaling has yet to be extensively studied in vivo. Here, a distinct CD4-mediated, protein-based combination therapy of STING and ICB as an in situ vaccine, is reported. The treatment eliminates subcutaneous MC38 and YUMM1.7 tumors in 70-100% of mice and protected all cured mice against rechallenge. Mechanistic studies reveal a robust TH 1 polarization and suppression of Treg of CD4+ T cells, followed by an effective collaboration of CD4+ T, CD8+ T, and NK cells to eliminate tumors. Finally, the potential to overcome host STING deficiency by significantly decreasing MC38 tumor burden in STING KO mice is demonstrated, addressing the translational challenge for the 19% of human population with loss-of-function STING variants.

Keywords: CD4+ T cells; cancer immunotherapy; immune checkpoint blockade; stimulator of interferon genes signaling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • CD4-Positive T-Lymphocytes
  • CD8-Positive T-Lymphocytes
  • Humans
  • Immunotherapy
  • Killer Cells, Natural / pathology
  • Neoplasms* / drug therapy
  • Vaccines* / therapeutic use

Substances

  • Vaccines