Molecular layer modulation of two-dimensional organic ferroelectric transistors

Nanotechnology. 2023 Apr 19;34(27). doi: 10.1088/1361-6528/acca28.

Abstract

Ferroelectric transistors hold great potential in low consumption devices. Due to the high film quality and clean system, two dimensional organic semiconductors are widely employed to fabricate high performance organic electronic devices and explore the modulation mechanism of the molecular packing on device performance. Here, we combine the ferroelectric hafnium oxide HfZrOxand two-dimensional molecular crystal 2,9-didecyldinaphtho[2,3-b:2',3'-f]thieno[3,2b]thiophene (C10-DNTT) with controllable layers to study the molecular layer modulation of ferroelectric organic thin-film transistors (OTFTs). The contact resistance, driving current and transconductance are directly affected by the additional access resistance across the upper molecular layers at the source/drain contact region. Simultaneously, the capacitance of Schottky junction related to the molecular layer thickness could effectively adjust the gate potential acting on the organic channel, further controlling the devices' subthreshold swing and transconductance efficiency. This work would promote the development of low voltage and high performance OTFTs.

Keywords: contact resistance; ferroelectric organic thin-film transistor; molecular layer modulation; subthreshold swing.