Bridging gut microbiota composition with extended-spectrum beta-lactamase Enterobacteriales faecal carriage in critically ill patients (microbe cohort study)

Ann Intensive Care. 2023 Apr 4;13(1):25. doi: 10.1186/s13613-023-01121-0.

Abstract

Background: The worldwide dissemination of extended spectrum beta-lactamase producing Enterobacteriales (ESBL-E) is of major concern. Microbiota may play a role in the host resistance to colonization with ESBL-E, but the underlying mechanisms remain unknown. We aimed to compare the gut microbiota composition between ESBL-producing E. coli or K. pneumoniae carriers and ESBL-E non-carriers according to the bacterial species.

Results: Among 255 patients included, 11 (4,3%) were colonized with ESBL-producing E. coli and 6 (2,4%) with ESBL-producing K. pneumoniae, which were compared with age- and sex-matched ESBL-E non carriers. While no significant differences were found between ESBL-producing E. coli carriers and non-carriers, gut bacteriobiota α-diversity was decreased in ESBL-K. pneumoniae faecal carriers compared both with non-carriers (p = 0.05), and with ESBL-producing E. coli carriers. The presence of Sellimonas intestinalis was associated with the absence of ESBL-producing E. coli fecal carriage. Campylobacter ureolyticus, Campylobacter hominis, bacteria belonging to Clostridium cluster XI and Saccharomyces sp. were associated with the absence of ESBL-producing K. pneumoniae faecal carriage.

Conclusions: The composition of the gut microbiota differs between ESBL-producing E. coli and K. pneumoniae faecal carriers suggesting that microbial species should be taken into account when investigating the role of gut microbiota in resistance to gut colonization with ESBL-E.

Trial registration number: NCT04131569, date of registration: October 18, 2019.

Keywords: Colonization resistance; Extended-spectrum beta-lactamase; Intensive care unit; Microbiota; Mycobiota.

Associated data

  • ClinicalTrials.gov/NCT04131569