Highly Crystalline Prussian Blue for Kinetics Enhanced Potassium Storage

Small. 2023 Jul;19(28):e2207080. doi: 10.1002/smll.202207080. Epub 2023 Apr 4.

Abstract

Prussian blue analogs (PBAs) are promising cathode materials for potassium-ion batteries (KIBs) owing to their large open framework structure. As the K+ migration rate and storage sites rely highly on the periodic lattice arrangement, it is rather important to guarantee the high crystallinity of PBAs. Herein, highly crystalline K2 Fe[Fe(CN)6 ] (KFeHCF-E) is synthesized by coprecipitation, adopting the ethylenediaminetetraacetic acid dipotassium salt as a chelating agent. As a result, an excellent rate capability and ultra-long lifespan (5000 cycles at 100 mA g-1 with 61.3% capacity maintenance) are achieved when tested in KIBs. The highest K+ migration rate of 10-9 cm2 s-1 in the bulk phase is determined by the galvanostatic intermittent titration technique. Remarkably, the robust lattice structure and reversible solid-phase K+ storage mechanism of KFeHCF-E are proved by in situ XRD. This work offers a simple crystallinity optimization method for developing high-performance PBAs cathode materials in advanced KIBs.

Keywords: Prussian blue; cathode materials; enhanced kinetics; highly crystalline; potassium ion battery.