Functionalisation of extracellular vesicles with cyclic-RGDyC potentially for glioblastoma targeted intracellular drug delivery

Biomater Adv. 2023 Jun:149:213388. doi: 10.1016/j.bioadv.2023.213388. Epub 2023 Mar 16.

Abstract

With the intrinsic ability to cross the blood-brain barrier, small extracellular vesicles (sEVs) hold promise as endogenous brain-targeted drug delivery nano-platforms for glioblastoma (GBM) treatment. To increase GBM targetability, this study aimed to functionalise sEVs with cyclic arginine-glycine-aspartic acid-tyrosine-cysteine (cRGDyC), a ligand for integrin (αvβ3) that is overexpressed in GBM cells. Firstly, the intrinsic cellular uptake of sEVs derived from GBM U87 and pancreatic cancer MIA PaCa-2 cells was investigated on the donor cells. To obtain functionalised sEVs (cRGDyC-sEVs), DSPE-mPEG2000-maleimide was incubated with the selected (U87) sEVs, and cRGDyC was subsequently conjugated to the maleimide groups via a thiol-maleimide coupling reaction. The GBM cell targetability and intracellular trafficking of cRGDyC-sEVs were evaluated on U87 cells by fluorescence and confocal microscopy, using unmodified sEVs as a reference. The cytotoxicity of doxorubicin-loaded vesicles (Dox@sEVs, Dox@cRGDyC-sEVs) was compared with a standard liposome formulation (Dox@Liposomes) and free Dox. Both U87 and MIA PaCa-2 cell-derived sEVs displayed tropism with the former being >4.9-fold more efficient to be internalised into U87. Therefore, the U87-derived sEVs were chosen for GBM-targeting. Approximately 4000 DSPE-mPEG2000-maleimide were inserted onto each sEV with cRGDyC conjugated to the maleimide group. The cell targetability of cRGDyC-sEVs to U87 cells improved 2.4-fold than natural sEVs. Despite their proneness to be colocalised with endosomes/lysosomes, both Dox@sEVs and Dox@cRGDyC-sEVs showed superior cytotoxicity to U87 GBM cells compared to Dox@Liposomes, particularly Dox@cRGDyC-sEVs. Overall, U87-derived sEVs were successufully conjugated with cRGDyC via a PEG linker, and cRGDyC-sEVs were demonstrated to be a potnetial integrin-targeting drug delivery vehicle for GBM treatment. Graphic abstract.

Keywords: Cell-targeting; Glioblastoma; Integrin receptor; Intracellular trafficking; Small extracellular vesicles; Surface modification; Tropism.

MeSH terms

  • Cell Line, Tumor
  • Doxorubicin / pharmacology
  • Doxorubicin / therapeutic use
  • Extracellular Vesicles*
  • Glioblastoma* / drug therapy
  • Humans
  • Integrins / therapeutic use
  • Liposomes / therapeutic use

Substances

  • monomethoxypolyethylene glycol
  • Liposomes
  • Doxorubicin
  • Integrins