Multichannel Single-Photon Emissions with On-Demand Momentums by Using Anisotropic Quantum Metasurfaces

Adv Mater. 2023 Jun;35(26):e2212244. doi: 10.1002/adma.202212244. Epub 2023 May 12.

Abstract

Photon momentums and their control are important for carrying quantum information and increasing information capacities. It is a great challenge to freely control multiple momentums of single photons based on only phase-dependent schemes in isotropic metasurfaces because exact manipulations of interference phases and precise alignments between quantum emitters and metasurfaces are involved. Here, an anisotropic metasurface, in which anisotropic rather than isotropic nanoscatterers are arranged anisotropically, is proposed to freely control multiple momentums of single photons. In the metasurfaces, the phase-independent and phase-dependent schemes are used to independently control spin angular momentums (SAMs) and linear momentums (LMs), respectively. The phase-independent scheme allows robust alignment between quantum emitters and metasurfaces. The anisotropic design amends geometrical phases for oblique emissions, providing larger ranges (up to 53°) for tailoring LMs. In experiments, three-channel single-photon emissions with independent SAMs and LMs are demonstrated. The introduction of anisotropic nanoscatterers and anisotropic arrangements of nanoscatterers is a more general design method for metasurfaces, and it could provide more flexibility to freely and efficiently tailor single-photon emissions.

Keywords: anisotropic metasurfaces; linear momentum; single-photon emission; spin angular momentum; surface plasmon polaritons.