Growth and Saturation of the Electron Drift Instability in a Crossed Field Plasma

Phys Rev Lett. 2023 Mar 17;130(11):115101. doi: 10.1103/PhysRevLett.130.115101.

Abstract

The linear growth and nonlinear energy transfer of the electron drift instability (EDI) are experimentally measured in the plume of a low-temperature, Hall effect discharge. A frequency-based bispectral analysis technique applied to fast ion density fluctuation measurements shows a growth rate function that is qualitatively similar to predictions from the linear instability dispersion relation, but an order of magnitude smaller. Calculation of the nonlinear transfer function indicates multiple three-wave interactions between high-frequency resonances of the instability in addition to an inverse energy cascade toward lower-frequency modes. These results are discussed in the context of recent theoretical, numerical, and experimental efforts on the EDI in Hall effect discharges and how the EDI may impact anomalous cross field transport.