Significant difference in the efficacies of silicon application regimes on cadmium species and environmental risks in rice rhizosphere

Environ Pollut. 2023 Jun 15:327:121521. doi: 10.1016/j.envpol.2023.121521. Epub 2023 Mar 28.

Abstract

Silicon (Si) is commonly applied as base-fertilizer or foliar-topdressing to palliate the uptake-translocation-accumulation of cadmium (Cd) in rice through Si-Cd antagonism. However, little is known about the fate of Cd in rice rhizosphere soil and its eco-environmental effects under different Si treatments. Here, systematic works had been carried out to elucidate the Cd species, soil properties, and environmental risks in rice rhizosphere driven by different Si soil-fertilization regimes including CK (without Si-addition), TSi (added before transplanting stage), JSi (added at jointing stage), and TJSi (split into two equal parts, added half before transplanting and another half at jointing stage). Results showed that TJSi outperformed the rest of fertilization regimes. The solid-phase-Cd concentrations treated with TSi, TJSi and JSi were increased by 4.18%, 5.73% and 3.41%, respectively, when compared to CK. The labile Cd (F1+F2) proportion of TJSi was reduced by 16.30%, 9.30% and 6.78%, respectively, when compared to CK, TSi, and JSi. Simultaneously, the liquid-phase-Cd concentration was appreciably suppressed by TJSi throughout the rice lifecycle, while TSi mainly abated Cd dissociation during the vegetative period, and JSi attenuated it during the grain-filling stage. The mobility factor of Cd treated with TJSi was the lowest, which was significantly lower than that of TSi (9.30%) and JSi (6.78%), respectively. Similarly, the oral exposure risk of TJSi was reduced by 4.43% and 32.53%; and the food-chain exposure risk of TJSi was decreased by 13.03% and 42.78%. Additionally, TJSi was the most effective in promoting enzyme activities and nutrient content in rhizosphere soil. Overall, TJSi is more positive and sustainable than TSi and JSi in reconstructing Cd-contaminated rhizosphere environments and abating the environmental risks of Cd. Agronomic practices in Cd-contaminated paddy soils can be informed by applying Si-fertilizer separately before transplanting and at jointing stage to achieve soil welfare and food security.

Keywords: Cadmium; Environmental risk; Rice rhizosphere; Silicon; Soil properties.

MeSH terms

  • Cadmium / analysis
  • Fertilizers / analysis
  • Oryza*
  • Rhizosphere
  • Silicon / pharmacology
  • Soil
  • Soil Pollutants* / analysis

Substances

  • Cadmium
  • Silicon
  • Fertilizers
  • Soil Pollutants
  • Soil