Targeted engagement of β-catenin-Ikaros complexes in refractory B-cell malignancies

bioRxiv [Preprint]. 2023 Mar 15:2023.03.13.532152. doi: 10.1101/2023.03.13.532152.

Abstract

In most cell types, nuclear β-catenin functions as prominent oncogenic driver and pairs with TCF7-family factors for transcriptional activation of MYC. Surprisingly, B-lymphoid malignancies not only lacked expression and activating lesions of β-catenin but critically depended on GSK3β for effective β-catenin degradation. Our interactome studies in B-lymphoid tumors revealed that β-catenin formed repressive complexes with lymphoid-specific Ikaros factors at the expense of TCF7. Instead of MYC-activation, β-catenin was essential to enable Ikaros-mediated recruitment of nucleosome remodeling and deacetylation (NuRD) complexes for transcriptional repression of MYC. To leverage this previously unrecognized vulnerability of B-cell-specific repressive β-catenin-Ikaros-complexes in refractory B-cell malignancies, we examined GSK3β small molecule inhibitors to subvert β-catenin degradation. Clinically approved GSK3β-inhibitors that achieved favorable safety prof les at micromolar concentrations in clinical trials for neurological disorders and solid tumors were effective at low nanomolar concentrations in B-cell malignancies, induced massive accumulation of β-catenin, repression of MYC and acute cell death. Preclinical in vivo treatment experiments in patient-derived xenografts validated small molecule GSK3β-inhibitors for targeted engagement of lymphoid-specific β-catenin-Ikaros complexes as a novel strategy to overcome conventional mechanisms of drug-resistance in refractory malignancies.

Highlights: Unlike other cell lineages, B-cells express nuclear β-catenin protein at low baseline levels and depend on GSK3β for its degradation.In B-cells, β-catenin forms unique complexes with lymphoid-specific Ikaros factors and is required for Ikaros-mediated tumor suppression and assembly of repressive NuRD complexes. CRISPR-based knockin mutation of a single Ikaros-binding motif in a lymphoid MYC superenhancer region reversed β-catenin-dependent Myc repression and induction of cell death. The discovery of GSK3β-dependent degradation of β-catenin as unique B-lymphoid vulnerability provides a rationale to repurpose clinically approved GSK3β-inhibitors for the treatment of refractory B-cell malignancies.

Graphical abstract: Abundant nuclear β-cateninβ-catenin pairs with TCF7 factors for transcriptional activation of MYCB-cells rely on efficient degradation of β-catenin by GSK3βB-cell-specific expression of Ikaros factors Unique vulnerability in B-cell tumors: GSK3β-inhibitors induce nuclear accumulation of β-catenin.β-catenin pairs with B-cell-specific Ikaros factors for transcriptional repression of MYC.

Publication types

  • Preprint