Clonal associations of lymphocyte subsets and functional states revealed by single cell antigen receptor profiling of T and B cells in rheumatoid arthritis synovium

bioRxiv [Preprint]. 2023 Mar 21:2023.03.18.533282. doi: 10.1101/2023.03.18.533282.

Abstract

Rheumatoid arthritis (RA) is an autoimmune disease initiated by antigen-specific T cells and B cells, which promote synovial inflammation through a complex set of interactions with innate immune and stromal cells. To better understand the phenotypes and clonal relationships of synovial T and B cells, we performed single-cell RNA and repertoire sequencing on paired synovial tissue and peripheral blood samples from 12 donors with seropositive RA ranging from early to chronic disease. Paired transcriptomic-repertoire analyses highlighted 3 clonally distinct CD4 T cells populations that were enriched in RA synovium: T peripheral helper (Tph) and T follicular helper (Tfh) cells, CCL5+ T cells, and T regulatory cells (Tregs). Among these cells, Tph cells showed a unique transcriptomic signature of recent T cell receptor (TCR) activation, and clonally expanded Tph cells expressed an elevated transcriptomic effector signature compared to non-expanded Tph cells. CD8 T cells showed higher oligoclonality than CD4 T cells, and the largest CD8 T cell clones in synovium were highly enriched in GZMK+ cells. TCR analyses revealed CD8 T cells with likely viral-reactive TCRs distributed across transcriptomic clusters and definitively identified MAIT cells in synovium, which showed transcriptomic features of TCR activation. Among B cells, non-naive B cells including age-associated B cells (ABC), NR4A1+ activated B cells, and plasma cells, were enriched in synovium and had higher somatic hypermutation rates compared to blood B cells. Synovial B cells demonstrated substantial clonal expansion, with ABC, memory, and activated B cells clonally linked to synovial plasma cells. Together, these results reveal clonal relationships between functionally distinct lymphocyte populations that infiltrate RA synovium.

Publication types

  • Preprint