Static Positioning under Tree Canopy Using Low-Cost GNSS Receivers and Adapted RTKLIB Software

Sensors (Basel). 2023 Mar 15;23(6):3136. doi: 10.3390/s23063136.

Abstract

The decrease in costs and dimensions of GNSS receivers has enabled their adoption for a very wide range of users. Formerly mediocre positioning performance is benefiting from recent technology advances, namely the adoption of multi-constellation, multi-frequency receivers. In our study, we evaluate signal characteristics and horizontal accuracies achievable with two low-cost receivers-a Google Pixel 5 smartphone and a u-Blox ZED F9P standalone receiver. The considered conditions include open area with nearly optimal signal reception, but also locations with differing amounts of tree canopy. GNSS data were acquired using ten 20 min observations under leaf-on and leaf-off conditions. Post-processing in static mode was conducted using the Demo5 fork of the RTKLIB open source software, which is adapted for usage with lower quality measurement data. The F9P receiver provided consistent results with sub-decimeter median horizontal errors even under tree canopy. The errors for the Pixel 5 smartphone were under 0.5 m under open-sky conditions and around 1.5 m under vegetation canopy. The adaptation of the post-processing software to lower quality data was proven crucial, especially for the smartphone. In terms of signal quality (carrier-to-noise density, multipath), the standalone receiver provided significantly better data than the smartphone.

Keywords: RTKLIB; horizontal accuracy; low-cost GNSS receivers; raw GNSS data; smartphone; vegetation cover.