Accelerated Reinforcement of Calcareous sand via Biomineralization with Aluminum Ion Flocculant

Appl Biochem Biotechnol. 2023 Dec;195(12):7197-7213. doi: 10.1007/s12010-023-04429-6. Epub 2023 Mar 29.

Abstract

Microbially induced calcium carbonate precipitation (MICP) is an immensely growing technique that utilizes the metabolic pathways of bacteria to form calcite precipitation throughout the soil matrix, leading to improve geotechnical engineering properties. However, the excessive number of treatments limited the application of MICP for strengthening calcareous sand. To reduce the number of treatments and develop efficiencies, this paper investigates the optimized treatment protocol of adding aluminum ion flocculants to the cementing solution to accelerate the curing rate of the MICP and its effect. The results show that adding a certain concentration of AlCl3 to the cementing solution can resulted in a rapid increase in strength of the calcareous sand column. When 0.02 M aluminum chloride was added to the cementing solution, the unconfined compressive strength of the sand column reached 827 kPa after three treatments, and it reached 2 MPa after five treatments, while the control group needed to be treated 10 and 15 times, respectively, to reach equivalent strengths. In this paper, the unconfined compressive strength of the sand column formed using the proposed method was 27-40 times that of the control group at the same calcium carbonate content. The presented experimental approach can be used as a tool to design the treatment protocol for the engineering application of MICP-reinforced calcareous sand in practice.

Keywords: Aluminum ion flocculant; Calcareous sand; MICP; Rapid reinforcement; Unconfined compressive strength.

MeSH terms

  • Aluminum*
  • Biomineralization
  • Calcium Carbonate / metabolism
  • Sand*
  • Soil

Substances

  • Sand
  • Aluminum
  • Soil
  • Calcium Carbonate