Sargassum@magnetite Composite EDTA-Functionalized for the Potential Removal of Mercury

Polymers (Basel). 2023 Mar 11;15(6):1405. doi: 10.3390/polym15061405.

Abstract

Sargassum spp. affects the Caribbean shores; thus, its remotion or valorization is a priority. This work aimed to synthesize a low-cost magnetically retrievable Hg+2 adsorbent functionalized with ethylenediaminetetraacetic acid (EDTA) based on Sargassum. The Sargassum was solubilized to synthesize by co-precipitation a magnetic composite. A central composite design was assessed to maximize the adsorption of Hg+2. The solids yield magnetically attracted mass, and the saturation magnetizations of the functionalized composite were 60.1 ± 17.2%, 75.9 ± 6.6%, and 1.4 emu g-1. The functionalized magnetic composite yielded 29.8 ± 0.75 mg Hg+2 g-1 of chemisorption after 12 h, pH 5, and 25 °C achieving 75% Hg+2 adsorption after four reuse cycles. Crosslinking and functionalization with Fe3O4 and EDTA created differences in surface roughness as well as the thermal events of the composites. The Fe3O4@Sargassum@EDTA composite was a magnetically recovered biosorbent of Hg2+.

Keywords: Sargassum spp.; alkaline co-precipitation; heavy metal adsorption; magnetic composite; mercury removal.