Screening Autoxidation Propensities of Drugs in the Solid-State Using PVP and in the Solution State Using N-Methyl Pyrrolidone

Pharmaceutics. 2023 Mar 5;15(3):848. doi: 10.3390/pharmaceutics15030848.

Abstract

Oxidative degradation of drugs is one of the major routes of drug substance and drug product instability. Among the diverse routes of oxidation, autoxidation is considered to be challenging to predict and control, potentially due to the multi-step mechanism involving free radicals. C-H bond dissociation energy (C-H BDE) is evidenced to be a calculated descriptor shown to predict drug autoxidation. While computational predictions for the autoxidation propensity of drugs are both swift and possible, no literature to date has highlighted the relationship between the computed C-H BDE and the experimentally-derived autoxidation propensities of solid drugs. The objective of this study is to investigate this missing relationship. The present work is an extension to the previously reported novel autoxidation approach that involves subjecting a physical mixture of pre-milled polyvinyl pyrrolidone (PVP) K-60 and a crystalline drug under high temperature and pressurized oxygen setup. The drug degradation was measured using chromatographic methods. An improved trend between the extent of solid autoxidation and C-H BDE could be observed after normalizing the effective surface area of drugs in the crystalline state, pointing to a positive relationship. Additional studies were conducted by dissolving the drug in N-methyl pyrrolidone (NMP) and exposing the solution under a pressurized oxygen setup at diverse elevated temperatures. Chromatographic results of these samples indicated a similarity in the formed degradation products to the solid-state experiments pointing to the utility of NMP, a PVP monomer surrogate, as a stressing agent for faster and relevant autoxidation screening of drugs in formulations.

Keywords: BDE; N-methyl pyrrolidone; RapidOxy®; autoxidation screening.

Grants and funding

This research was funded by the Austrian COMET Program by the Austrian Federal Ministry of Transport, Innovation, and Technology (BMVIT), the Austrian Federal Ministry of Economy, Family and Youth (BMWFJ), and the State of Styria (Styrian Funding Agency; SFG). COMET program is managed by the Austrian Research Promotion Agency (FFG).