Evaluation of Physicochemical Properties of Sustained-Release Membranes Based on Analytic Hierarchy

Membranes (Basel). 2023 Mar 9;13(3):313. doi: 10.3390/membranes13030313.

Abstract

In this paper, the optimal analytic hierarchy process was used to establish a comprehensive evaluation model for the physicochemical properties of composite sustained-release membrane materials based on water absorption (XS), water permeability (TS), tensile strength (KL), elongation at break (DSL), fertilizer permeability (TF), and viscosity (ND), and the optimal ratio parameters of membrane material were determined. Analytic hierarchy process (AHP) combined with correlation analysis was used to construct the judgment matrix of physicochemical properties, which passed the consistency test, and to determine the weight and ranking of each index: TF (0.6144) > XS (0.1773) > KL (0.1561) > ND (0.1311) > TS (0.0775) > DSL (0.0520). The comprehensive scores of sustained-release membrane materials under different treatments were calculated based on normalized data samples and weights. It was determined that the percentage of each component in the best comprehensive performance of the slow-release membrane material was as follows: polyvinyl alcohol, polyvinylpyrrolidone, zeolite, and epoxy resin were 7.3%, 0.7%, 0.5%, and 2%, respectively.

Keywords: analytic hierarchy; comprehensive evaluation; physicochemical properties; sustained-release membrane materials.