Application of an Eco-Friendly Adhesive and Electrochemical Nanostructuring for Joining of Aluminum A1050 Plates

Materials (Basel). 2023 Mar 18;16(6):2428. doi: 10.3390/ma16062428.

Abstract

In adhesive joints used in several industrial applications, the adherends' bonding is made using an adhesive, which is usually an epoxy resin. However, since these adhesives are derived from petroleum fractions, they are harmful to the environment, due to the pollutants produced both during their manufacture and subsequent use. Thus, in recent years, effective steps have been made to replace these adhesives with ecological (green) ones. The present work focuses on the study of aluminum A1050 joints bonded with a green adhesive; the study also involves the electrochemical anodization method applied to adherends for nano-functionalization. The nanostructured aluminum adherends allow the formation of an expanded surface area for adhesion, compared to the non-anodized adherends. For comparison reasons, two different adhesives (Araldite LY1564 and Green Super Sap) were used. In addition, for the same reasons, both anodized and non-anodized aluminum adherends were joined with both types of adhesives. The lap joints were subsequently tested under both shear-tension and three-point bending conditions. The major findings were that aluminum A1050 anodization in all cases resulted in shear strength enhancement of the joints, while joints with both aluminum anodized and non-anodized adherends and bonded with the eco-friendly adhesive showed a superior shear behavior as compared to the respective joints bonded with Araldite adhesive.

Keywords: alumina nanotubes; aluminum A1050; eco-friendly adhesive; electrochemical anodization; single-lap joint (SLJ); tensile-shear testing; three-point bending.

Grants and funding

This research received no external funding.