Diaphragm Ultrasound in Critically Ill Patients on Mechanical Ventilation-Evolving Concepts

Diagnostics (Basel). 2023 Mar 15;13(6):1116. doi: 10.3390/diagnostics13061116.

Abstract

Mechanical ventilation (MV) is a life-saving respiratory support therapy, but MV can lead to diaphragm muscle injury (myotrauma) and induce diaphragmatic dysfunction (DD). DD is relevant because it is highly prevalent and associated with significant adverse outcomes, including prolonged ventilation, weaning failures, and mortality. The main mechanisms involved in the occurrence of myotrauma are associated with inadequate MV support in adapting to the patient's respiratory effort (over- and under-assistance) and as a result of patient-ventilator asynchrony (PVA). The recognition of these mechanisms associated with myotrauma forced the development of myotrauma prevention strategies (MV with diaphragm protection), mainly based on titration of appropriate levels of inspiratory effort (to avoid over- and under-assistance) and to avoid PVA. Protecting the diaphragm during MV therefore requires the use of tools to monitor diaphragmatic effort and detect PVA. Diaphragm ultrasound is a non-invasive technique that can be used to monitor diaphragm function, to assess PVA, and potentially help to define diaphragmatic effort with protective ventilation. This review aims to provide clinicians with an overview of the relevance of DD and the main mechanisms underlying myotrauma, as well as the most current strategies aimed at minimizing the occurrence of myotrauma with special emphasis on the role of ultrasound in monitoring diaphragm function.

Keywords: diaphragm dysfunction; diaphragm-protective mechanical ventilation; diaphragmatic ultrasound; inspiratory effort; mechanical ventilation; myotrauma; patient–ventilator asynchrony.

Publication types

  • Review

Grants and funding

This research received no external funding.