Current Trends in Antimicrobial Resistance Patterns in Bacterial Pathogens among Adult and Pediatric Patients in the Intensive Care Unit in a Tertiary Care Hospital in Kolkata, India

Antibiotics (Basel). 2023 Feb 24;12(3):459. doi: 10.3390/antibiotics12030459.

Abstract

Nosocomial infections by multidrug-resistant (MDR) bacteria are among the main causes of morbidity and death in patients hospitalized in intensive care units (ICUs) worldwide. Antibiotic resistance has become a major concern for treating the patients with nosocomial infections. The aim of this study was to describe the antibiotic resistance patterns of pathogens causing infections in adult and pediatric patients in the ICUs of a tertiary care hospital in Kolkata, India. A cross-sectional, retrospective study was conducted from January 2022 to October 2022 on a total of 139 adult and 146 pediatric patients. Depending on clinical symptoms of the patients, samples were collected and subjected to antibiotic sensitivity testing. The culture and sensitivity pattern of clinical isolates from blood, urine, sputum, endotracheal tube (ET) aspirate, and central line catheter insertion site swabs were analyzed. A total of 695 and 556 specimens were obtained from adult and pediatric ICU, respectively. Culture positivity rate among adults and pediatric patients were 37% and 40%, respectively. The most commonly isolated organisms were Gram-negative Enterobacterales and non-fermenters. Most of the bacterial isolates showed very high resistance against multiple antibiotics. Escherichia coli from adult and pediatricpatients were found to be resistant to second generation cephalosporins (95% and 96%, respectively), beta-lactams (95% and 63%, respectively), fluoroquinolones (95% and 81%, respectively), and cotrimoxazole (85% and 78%, respectively). Klebsiella spp. from adult patients were found to be resistant to aminoglycosides (75%), second generation cephalosporins (100%), beta-lactams (94%), fluoroquinolones (92%), carbapenems (88%), and cotrimoxazole (83%). Proteus spp., Acinetobacter baumannii, and Pseudomonas spp. werefound to be resistant to multiple antibiotics. Enterococcus spp. from ICUs showed more than 90% resistance against ampicillin and more than 75% resistance against fluoroquinolones. MDR bacterial infections are increasing in both adult and pediatric ICUs, leading to significant therapeutic challenges. A frequent study of antimicrobial resistance patterns is imperative for antibiotic stewardshipin combatting the deadly effect of the MDR bacteria in critically ill patients.

Keywords: antibiotic resistance; intensive care units; multidrug-resistant bacteria; nosocomial infections; public health.

Grants and funding

This research received no external funding.