Multiresponsive Microactuator for Ultrafast Submillimeter Robots

ACS Nano. 2023 Apr 11;17(7):6589-6600. doi: 10.1021/acsnano.2c12203. Epub 2023 Mar 28.

Abstract

Untethered submillimeter microrobots have significant application prospects in environment monitoring, reconnaissance, and biomedicine. However, they are practically limited to their slow movement. Here, an electrical/optical-actuated microactuator is reported and developed into several untethered ultrafast submillimeter robots. Composed of multilayer nanofilms with exquisitely designed patterns and high surface-to-volume ratios, the microrobot exhibits flexible, precise, and rapid response under voltages and lasers, resulting in controllable and ultrafast inchworm-type movement. The proposed design and microfabrication approach allows various improved and distinctive 3D microrobots simultaneously. The motion speed is highly related to the laser frequency and reaches 2.96 mm/s (3.66 body length/s) on the polished wafer surface. Excellent movement adaptability of the robot is also verified on other rough substrates. Moreover, directional locomotion can be realized simply by the bias of the irradiation of the laser spot, and the maximum angular speed reaches 167.3°/s. Benefiting from the bimorph film structure and symmetrical configuration, the microrobot is able to maintain functionalized after being crashed by a payload 67 000 times heavier than its weight, or at the unexpectedly reversed state. These results provide a strategy for 3D microactuators with precise and rapid response, and microrobots with fast movement for delicate tasks in narrow and restrictive scenarios.

Keywords: microactuator; microelectromechanical systems (MEMS); microrobot; multiresponsive; nanofilms.