Development of CRISPR/Cas12b-Based Multiple Cross Displacement Amplification Technique for the Detection of Mycobacterium tuberculosis Complex in Clinical Settings

Microbiol Spectr. 2023 Mar 28;11(2):e0347522. doi: 10.1128/spectrum.03475-22. Online ahead of print.

Abstract

Tuberculosis (TB) is a chronic infectious disease with high mortality caused by the Mycobacterium tuberculosis complex (MTC). Its clinical symptoms include a prolonged cough with mucus, pleuritic chest pain, hemoptysis, etc., and predominant complications such as tuberculous meningitis and pleural effusion. Thus, developing rapid, ultrasensitive, and highly specific detection techniques plays an important role in controlling TB. Here, we devised CRISPR/CRISPR-associated 12b nuclease (CRISPR/Cas12b)-based multiple cross displacement amplification technique (CRISPR-MCDA) targeting the IS6110 sequence and used it to detect MTC pathogens. A newly engineered protospacer adjacent motif (PAM) site (TTTC) was modified in the linker region of the CP1 primer. In the CRISPR-MCDA system, the exponentially amplified MCDA amplicons with the PAM sites can guide the Cas12b/gRNA complex to quickly and accurately recognize its target regions, which successfully activates the CRISPR/Cas12b effector and enables ultrafast trans-cleavage of single-stranded DNA reporter molecules. The limit of detection of the CRISPR-MCDA assay was 5 fg/μL of genomic DNA extracted from the MTB reference strain H37Rv. The CRISPR-MCDA assay successfully detected all examined MTC strains and there was no cross-reaction with non-MTC pathogens, confirming that its specificity is 100%. The entire detection process can be completed within 70 min using real-time fluorescence analysis. Moreover, visualization detection (under UV light) was also designed to verify the results, eliminating the use of specialized instruments. In conclusion, the CRISPR-MCDA assay established in this report can be used as a valuable detection technique for MTC infection. IMPORTANCE The Mycobacterium tuberculosis complex pathogen is a crucial infectious agent of tuberculosis. Hence, improving the capability of MTC detection is one of the most urgently required strategies for preventing and controlling TB. In this report, we successfully developed and implemented CRISPR/Cas12b-based multiple cross displacement amplification targeting the IS6110 sequence to detect MTC pathogens. These results demonstrated that the CRISPR-MCDA assay developed in this study was a rapid, ultrasensitive, highly specific, and readily available method which can be used as a valuable diagnostic tool for MTC infection in clinical settings.

Keywords: CRISPR; Cas12b; Mycobacterium tuberculosis complex; multiple cross displacement amplification; tuberculosis.