Quantification of absolute transcription factor binding affinities in the native chromatin context using BANC-seq

Nat Biotechnol. 2023 Dec;41(12):1801-1809. doi: 10.1038/s41587-023-01715-w. Epub 2023 Mar 27.

Abstract

Transcription factor binding across the genome is regulated by DNA sequence and chromatin features. However, it is not yet possible to quantify the impact of chromatin context on transcription factor binding affinities. Here, we report a method called binding affinities to native chromatin by sequencing (BANC-seq) to determine absolute apparent binding affinities of transcription factors to native DNA across the genome. In BANC-seq, a concentration range of a tagged transcription factor is added to isolated nuclei. Concentration-dependent binding is then measured per sample to quantify apparent binding affinities across the genome. BANC-seq adds a quantitative dimension to transcription factor biology, which enables stratification of genomic targets based on transcription factor concentration and prediction of transcription factor binding sites under non-physiological conditions, such as disease-associated overexpression of (onco)genes. Notably, whereas consensus DNA binding motifs for transcription factors are important to establish high-affinity binding sites, these motifs are not always strictly required to generate nanomolar-affinity interactions in the genome.

MeSH terms

  • Binding Sites / genetics
  • Chromatin* / genetics
  • DNA / genetics
  • DNA / metabolism
  • Gene Expression Regulation
  • Protein Binding
  • Sequence Analysis, DNA
  • Transcription Factors* / genetics
  • Transcription Factors* / metabolism

Substances

  • Chromatin
  • Transcription Factors
  • DNA