Artificial-intelligence-enhanced synthetic thick slabs versus standard slices in digital breast tomosynthesis

Br J Radiol. 2023 Apr 1;96(1145):20220967. doi: 10.1259/bjr.20220967. Epub 2023 Apr 17.

Abstract

Objectives: Digital breast tomosynthesis (DBT) can provide additional information over mammography, albeit at the cost of prolonged reading time. This study retrospectively investigated the impact of reading enhanced synthetic 6 mm slabs instead of standard 1 mm slices on interpretation time and readers performance in a diagnostic assessment centre.

Methods: Three radiologists (R1-3; 6/4/2 years of breast imaging experience) reviewed 111 diagnostic DBT examinations. Two datasets were interpreted independently for each patient, with one set containing artificial-intelligence-enhanced synthetic 6 mm slabs with 3 mm overlap, while the other set comprised standard 1 mm slices. Blinded to histology and follow-up, readers noted individual BIRADS categories and diagnostic confidence while reading time was recorded. Among the 111 examinations, 70 findings were histopathologically correlated including 56 malignancies.

Results: No significant difference was found between BIRADS categories assigned based on 6 mm vs 1 mm datasets (p ≥ 0.317). Diagnostic accuracy was comparable for 6 mm and 1 mm readings (R1: 87.0% vs 87.0%; R2: 86.1% vs 87.0%; R3: 80.0% vs 84.4%; p ≥ 0.125) with high interrater agreement (intraclass correlation coefficient 0.848 vs 0.865). One reader reported higher confidence with 1 mm slices (R1: p = 0.033). Reading time was substantially shorter when interpreting 6 mm slabs compared to 1 mm slices (R1: 33.5 vs 46.2; R2: 49.1 vs 64.8; R3: 39.5 vs 67.2 sec; all p < 0.001).

Conclusions: Artificial-intelligence-enhanced synthetic 6 mm slabs allow for substantial interpretation time reduction in diagnostic DBT without a decrease in reader accuracy.

Advances in knowledge: A simplified slab-only protocol instead of 1 mm slices may offset the higher reading time without a loss of diagnosis-relevant image information in first and second readings. Further evaluations are required regarding workflow implications, particularly in screening settings.

MeSH terms

  • Breast Neoplasms* / diagnostic imaging
  • Female
  • Humans
  • Intelligence
  • Mammography* / methods
  • Physical Examination
  • Radiologists
  • Retrospective Studies