Glomus mosseae improved the adaptability of alfalfa (Medicago sativa L.) to the coexistence of cadmium-polluted soils and elevated air temperature

Front Plant Sci. 2023 Mar 9:14:1064732. doi: 10.3389/fpls.2023.1064732. eCollection 2023.

Abstract

The coexistence of heavy metal-polluted soils and global warming poses serious threats to plants. Many studies indicate that arbuscular mycorrhizal fungi (AMF) can enhance the resistance of plants to adverse environments such as heavy metals and high temperature. However, few studies are carried out to explore the regulation of AMF on the adaptability of plants to the coexistence of heavy metals and elevated temperature (ET). Here, we investigated the regulation of Glomus mosseae on the adaptability of alfalfa (Medicago sativa L.) to the coexistence of cadmium (Cd)-polluted soils and ET. G. mosseae significantly enhanced total chlorophyll and carbon (C) content in the shoots by 15.6% and 3.0%, respectively, and Cd, nitrogen (N), and phosphorus (P) uptake by the roots by 63.3%, 28.9%, and 85.2%, respectively, under Cd + ET. G. mosseae significantly increased ascorbate peroxidase activity, peroxidase (POD) gene expression, and soluble proteins content in the shoots by 13.4%, 130.3%, and 33.8%, respectively, and significantly decreased ascorbic acid (AsA), phytochelatins (PCs), and malondialdehyde (MDA) contents by 7.4%, 23.2%, and 6.5%, respectively, under ET + Cd. Additionally, G. mosseae colonization led to significant increases in POD (13.0%) and catalase (46.5%) activities, Cu/Zn-superoxide dismutase gene expression (33.5%), and MDA (6.6%), glutathione (22.2%), AsA (10.3%), cysteine (101.0%), PCs (13.8%), soluble sugars (17.5%), and proteins (43.4%) contents in the roots and carotenoids (23.2%) under ET + Cd. Cadmium, C, N, G. mosseae colonization rate, and chlorophyll significantly influenced shoots defenses and Cd, C, N, P, G. mosseae colonization rate, and sulfur significantly affected root defenses. In conclusion, G. mosseae obviously improved the defense capacity of alfalfa under ET + Cd. The results could improve our understanding of the regulation of AMF on the adaptability of plants to the coexistence of heavy metals and global warming and phytoremediation of heavy metal-polluted sites under global warming scenarios.

Keywords: antioxidant enzymes activities; antioxidants; chelators; gene expression; osmotyes.

Grants and funding

This work was jointly supported by the National Natural Science Foundation of China (grant Nos. 31870582 and 31270665) and the Project Supported by Shaanxi Key Laboratory of Land Consolidation of China (Program No. 2019TD-01).