Bacillussp. based nano-bio hybrids for efficient water remediation

Environ Pollut. 2023 Jun 1:326:121490. doi: 10.1016/j.envpol.2023.121490. Epub 2023 Mar 23.

Abstract

Macroalgae are a diverse group of primary producers that offer indispensable ecosystem services towards bacterial colonization and proliferation in aquatic biomes. Macroalgae/bacteria interactions are complex in natural biomes and contribute mutually to their growth and biotechnological outcomes. Most findings on macroalgae-associated bacteria and their secreted enzymes have largely been limited to nutraceutical applications. Here, in this study, we demonstrate and investigate the growth of Bacillus sp. (macroalgae-associated bacteria) with the substitution of its associated macroalgae (Gracilaria corticata) on graphene oxide (GO). The findings indicated that the presence of wrinkles of GO nanosheets resulted in cell proliferation and adherence without causing mechanical damage to the cell membrane. Furthermore, the assembly of GO-marine bacteria was explored for organic pollutant treatment using methylene blue (MB) as a model dye. The degradation results suggest the breakdown of MB into non-toxic byproducts as suggested by the phytotoxicity assay.

Keywords: Dye degradation; Graphene oxide; Macroalgae-associated bacteria; Marine Bacillus; Phytotoxicity.

MeSH terms

  • Bacteria
  • Ecosystem
  • Methylene Blue / toxicity
  • Seaweed*
  • Water*

Substances

  • Water
  • Methylene Blue
  • graphene oxide