Emergent Edge Modes in Shifted Quasi-One-Dimensional Charge Density Waves

Phys Rev Lett. 2023 Mar 10;130(10):106203. doi: 10.1103/PhysRevLett.130.106203.

Abstract

We propose and study a two-dimensional phase of shifted charge density waves (CDW), which is constructed from an array of weakly coupled 1D CDW wires whose phases shift from one wire to the next. We show that the fully gapped bulk CDW has topological properties, characterized by a nonzero Chern number, that imply edge modes within the bulk gap. Remarkably, these edge modes exhibit spectral pseudoflow as a function of position along the edge, and are thus dual to the chiral edge modes of Chern insulators with their spectral flow in momentum space. Furthermore, we show that the CDW edge modes are stable against interwire coupling. Our predictions can be tested experimentally in quasi-1D CDW compounds such as Ta_{2}Se_{8}I.