Tuning the Dual Active Sites of Functionalized UiO-66 for Selective Adsorption of Yb(III)

ACS Appl Mater Interfaces. 2023 Apr 5;15(13):17233-17244. doi: 10.1021/acsami.3c00938. Epub 2023 Mar 24.

Abstract

The recovery of rare earth elements (REEs) from discharged electronic devices or mineral waste water is highly essential but still facing challenges. In this work, two amino-functionalized carboxyl-UiO-66 (UiO-66-COOH-TETA and UiO-66-(COOH)2-ED) prepared via the postmodification method were employed as the adsorbents for Yb(III) capture. The experimental results revealed their superior adsorption capacities of 161.5 and 202.6 mg/g, respectively. Meanwhile, their adsorption processes can be described by the pseudo-second-order kinetic model and Langmuir model. Effects of initial pH and temperature on adsorptions were systematically evaluated, affording an optimal operating condition (i.e., pH of 5.5-6, T of 65 °C, t of 10 h). Moreover, the fabricated materials exhibited great reusability after five adsorption-regeneration cycles. UiO-66-COOH-TETA demonstrated good separation selectivity for Yb(III) over light REEs (i.e., 3.98 of Yb/Ce, 3.51 of Yb/Nd). Based on the density functional theory calculations and characterization analysis (XPS, Zeta, mapping, and IR), the adsorption mechanisms were mainly attributed to significant electrostatic attraction and strong surface complexation between N and O sites and Yb(III).

Keywords: UiO-66; adsorption; mechanism; rare earth; selectivity.