Sources, Components, Structure, Catalytic Mechanism and Applications: a Critical Review on Nicotinate Dehydrogenase

J Microbiol Biotechnol. 2023 Jun 28;33(6):707-714. doi: 10.4014/jmb.2302.02011. Epub 2023 Mar 6.

Abstract

Plant-derived insecticide-neonicotinoid insecticides (NIs) played a crucial role in the development of agriculture and food industry in recent years. Nevertheless, synthesis of these nitrogen-containing heterocyclic compounds with an effective and greener routing remains challenging especially to the notion raise of "green chemistry" and "atom economy". While bio-catalyzed methods mediated by nicotinate dehydrogenase (NDHase) then provide an alternative. The current review mainly focuses on the introduction of sources, components, structure, catalytic mechanism and applications of NDHase. Specifically, NDHase is known as nicotinic acid hydroxylase and the sources principally derived from phylum Proteobacteria. In addition, NDHase requires the participation of the electron respiratory chain system on the cell membrane. And the most important components of the electron respiratory chain are hydrogen carrier, which is mainly composed of iron-sulfur proteins (Fe-S), flavin dehydrogenase (FAD), molybdenum binding protein and cytochromes. Heterologous expression studies were hampered by the plasmid and host with high efficiency and currently only Pseudomonas entomophila L48 as well as Comamonas testosterone was successfully utilized for the expression of NDHase. Furthermore, it is speculated that the conjugate and inductive effects of the substituent group at position 3 of the substrate pyridine ring exerts a critical role in the hydroxylation reactions at position 6 concerning about the substrate molecular recognition mechanism. Finally, applications of NDHase are addressed in terms of pesticide industry and wastewater treatment. On conclusion, this critical review would not only deepen our understanding of the theory about NDHase, but also provides the guideline for future investigation of NDHase.

Keywords: 2-chloro-5-methylpyridine; 6-hydroxynicotinic acid; Neonicotinoid insecticides (NIs); microbial conversion of nicotinate; nicotinate dehydrogenase (NDHase).

Publication types

  • Review

MeSH terms

  • Oxidoreductases Acting on CH-NH Group Donors* / chemistry
  • Oxidoreductases Acting on CH-NH Group Donors* / genetics
  • Oxidoreductases Acting on CH-NH Group Donors* / metabolism
  • Plasmids

Substances

  • nicotinate dehydrogenase
  • Oxidoreductases Acting on CH-NH Group Donors