Bioactive Spinal Cord Scaffold Releasing Neurotrophic Exosomes to Promote In Situ Centralis Neuroplasticity

ACS Appl Mater Interfaces. 2023 Apr 5;15(13):16355-16368. doi: 10.1021/acsami.2c19607. Epub 2023 Mar 23.

Abstract

Spinal cord injury (SCI), one of the most serious injuries of the central nervous system, causes physical functional dysfunction and even paralysis in millions of patients. As a matter of necessity, redressing the neuroleptic pathologic microenvironment to a neurotrophic microenvironment is essential in order to alleviate this dilemma and facilitate the recovery of the spinal cord. Herein, based on cell-sheet technology, two functional cell types─uninduced and neural-induced stem cells from human exfoliated deciduous teeth─were formed into a composite membrane that subsequently self-assembled to form a bioactive scaffold with a spinal-cord-like structure, called a spinal cord assembly (SCA). In a stable extracellular matrix microenvironment, SCA continuously released SCA-derived exosomes containing various neurotrophic factors, which effectively promoted neuronal regeneration, axonal extension, and angiogenesis and inhibited glial scar generation in a rat model of SCI. Neurotrophic exosomes significantly improved the pathological microenvironment and promoted in situ centralis neuroplasticity, ultimately eliciting a strong repair effect in this model. SCA therapy is a promising strategy for the effective treatment of SCI based on neurotrophic exosome delivery.

Keywords: bioactive scaffold; exosome; neuroplasticity; neurotrophic; spinal cord injury.

MeSH terms

  • Animals
  • Exosomes* / metabolism
  • Humans
  • Neurogenesis
  • Neurons / metabolism
  • Rats
  • Spinal Cord Injuries* / therapy